
Multi-omics Sampling-based Graph Transformer for
Synthetic Lethality Prediction

Xusheng Zhao1,2, Hao Liu1,2, Qiong Dai1*, Hao Peng3, Xu Bai1, Huailiang Peng1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3School of Cyber Science and Technology, Beihang University, Beijing, China
*Corresponding author

{zhaoxusheng, liuhao1998, daiqiong}@iie.ac.cn, penghao@buaa.edu.cn, {baixu, penghuailiang}@iie.ac.cn

Abstract—Synthetic lethality (SL) prediction is used to identify
if the co-mutation of two genes results in cell death. The prevalent
strategy is to abstract SL prediction as an edge classification task
on gene nodes within SL data and achieve it through graph neural
networks (GNNs). However, GNNs suffer from limitations in their
message passing mechanisms, including over-smoothing and over-
squashing issues. Moreover, harnessing the information of non-SL
gene relationships within large-scale multi-omics data to facilitate
SL prediction poses a non-trivial challenge. To tackle these issues,
we propose a new multi-omics sampling-based graph transformer
for SL prediction (MSGT-SL). Concretely, we introduce a shallow
multi-view GNN to acquire local structural patterns from both SL
and multi-omics data. Further, we input gene features that encode
multi-view information into the standard self-attention to capture
long-range dependencies. Notably, starting with batch genes from
SL data, we adopt parallel random walk sampling across multiple
omics gene graphs encompassing them. Such sampling effectively
and modestly incorporates genes from omics in a structure-aware
manner before using self-attention. We showcase the effectiveness
of MSGT-SL on real-world SL tasks, demonstrating the empirical
benefits gained from the graph transformer and multi-omics data.

Index Terms—synthetic lethality, graph neural network, multi-
omics, graph transformer, gene sampling

I. INTRODUCTION

Synthetic lethality (SL) denotes a class of gene relationships
in which two genes mutated or lost together result in cell death,
while a mutation in either gene alone does not. Such properties
make SL shine in targeted cancer therapy, whose key treatment
is to interfere with the normal partner gene of a defective gene
in cancer cells and kill them. For instance, as a PARP inhibitor,
olaparib targets breast cancer in patients with BRCA mutations
by exploiting the SL relationship between PARP and BRCA1/2
genes [1]. However, because a large number of gene pairs with
potential SL relationships are unidentified [11], it is imperative
to develop approaches for SL prediction.

In the early stages of SL research, several prediction avenues
were pursued to identify if mutations in pairs of genes together
lead to cell death [2]. As an early and widely applied approach,
genetic screens [3]–[5] manipulate gene expression or fabricate
mutations to uncover SL relationships among specific genes. In
contrast to inefficient screening, the high-throughput approach
[6], [7] applies automated equipment and large-scale sampling
techniques to evaluate numerous gene pairs. The advancements

in functional genomics (e.g., RNAi [8] and CRISPR-Cas9 gene
editing [9], [10]) provide a more comprehensive understanding
of SL. These wet-lab methods achieve biological validation but
often require advanced techniques, specialized equipment, and
significant investments of time and resources.

To reduce costs, computational dry-lab methods have gained
extensive attention for their efficiency in processing large-scale
gene data [11]. In particular, they typically leverage rule-based
statistical inference, gene graph analysis, and machine learning
models [12]. Based on the definition of SL, statistical inference
[13]–[16] utilizes statistical tests to analyze gene data and infer
lethal pairs. Graph-based analysis [17], [18] regards top-ranked
gene pairs as cell killers through protein-protein and metabolic
networks, etc. In addition, machine learning models trained on
clear SL pairs have emerged in SL detection, including support
vector machine [19], [20], random forest [21]–[23], and matrix
factorization [24]–[26]. While these shallow methods can offer
clearer reasoning and explanations, they are often restricted by
complex feature engineering and linear assumptions.

More Recently, deep learning-based computational methods,
especially relying on graph neural networks (GNNs) [27]–[32],
have become highly popular in SL prediction. GNNs [33]–[36]
use message passing to aggregate features in gene graphs, thus
capturing non-linear relationships among genes. [28] proposes
a dual-dropout graph convolutional network (DDGCN), which
is the first GNN-based model for SL prediction. [29] integrates
various biological sources as extra features and applies a graph
attention network (GAT) [34] to further improve gene features.
[32] and [37] introduce additional elements related to SL (e.g.,
biological processes, diseases, compounds, and omics data) to
a knowledge graph (KG) and then complete SL prediction and
explanation. Although these GNN-based methods have yielded
remarkable results, they still face two problems: i) While GNN
aggregates features beyond local neighbors by stacking layers,
the exponentially growing receptive field with increasing depth
may lead to performance issues, including over-smoothing [39]
and over-squashing [40]. ii) Given the scale difference between
large-scale multi-omics data and SL data, applying omics gene
graphs with different non-SL gene relationships to improve SL
prediction remains a non-trivial challenge.

To address these issues, we propose a multi-omics sampling-
based graph transformer for SL prediction, namely MSGT-SL.

SL data (view-1)

Multi-omics data

Omics view-2

Omics view-M

...

Features-1

Features-2

Features-M

Concatenation &
Screening

Product & Scaling

Softmax
Pairwise

concatenation &
Screening

Gene A Gene B

Gene A Gene B

Gene A Gene B

Gene A Gene B

viable

viable

viable

lethal

Q K V

Core genes from SL data

Non-core genes
from multi-omics data

SL relationships

Symbol annotationSampled gene nodes

...

...

1. Multi-view GNN with one layer

2. Cross-omics sampling based on random walks

3. Self-attention

4. SL prediction

Non-SL relationships

Fig. 1: Overview of MSGT-SL, consisting of four steps: 1) Multi-view GNN learns local structural patterns from both SL data
and multi-omics data, 2) Cross-omics Sampling balances the scale of core and non-core genes in the SL and multi-omics data,
3) Self-attention learns potential long-range gene dependencies, 4) SL Prediction is implemented with pairwise gene features.

To avoid the limitations of GNNs, we use a shallow multi-view
GNN to learn local structural information of gene relationships
from both SL and multi-omics data. Besides, inspired by graph
transformers (GTs) [41]–[43] enabling communication among
all nodes with just one layer, we concatenate features from all
views for each gene and input them into a GT layer to capture
potential long-range gene dependencies. In particular, genes in
the SL data are usually only a small subgroup of genes in each
omics. Thus, to maintain focus on core genes belonging to SL
data in the self-attention of GT, we design a novel cross-omics
sampling to moderately incorporate additional non-core genes.
Specifically, for each input, we start with a batch of core genes
and run parallel random walk [44] sampling for multiple omics
gene graphs encompassing them. After that, we get a balanced
union of core and non-core genes in a structure-aware manner
while also reducing the computational burden of self-attention.
Finally, gene features are concatenated pairwise to identify SL
relationships, i.e., edge classification.

Our main contributions can be summarized as follows:
• The first attempt to capture long-range gene dependencies

using the GT framework.
• A new cross-omics gene sampling strategy for integrating

SL and multi-omics information.
• Extensive experiments on real-world datasets demonstrate

the superiority of MSGT-SL, highlighting the advantages
gained from GT and multi-omics data.

II. METHODOLOGY

In this part, we detail the multi-omics sampling-based graph
transformer for SL identification (MSGT-SL), whose overview
is exhibited in Fig. 1. All symbols are summarized in Table I.

A. Multi-view graph neural network

Typically, a SL dataset can be formulated as a graph network
G={V,E}, where V={v1, ..., vN} is a set containing N gene
nodes and E is the set of edges formed by the SL relationships.
Since each omics from the multi-omics data can be formulated
in a similar manner to G, the integration of SL with omics data
can be expressed as a multi-view graph G={G1, ..., GM} with
M views. It is worth noting that V and E under different views
are distinct, and only the first view contains SL edges E1 ∈ G1

serving as ground-truth labels for model training and testing.
As a paradigm designed for analyzing graph-structured data,

graph neural networks (GNNs) update the features of nodes by
iteratively aggregating information along their edges, capturing
the relationships and structural patterns among nodes. Besides,
the scope of such aggregation is often broadened by deepening
the layers. To overcome the limitations arising from increasing
depth while capturing local structures, we employ a multi-view
GNN (MVGNN) with fewer layers on the multi-view graph G,
which is a GNN expanded M times along the view dimension.
Taking classical convolutional aggregation [33] as an example,
the feature updating of MVGNN at the l-th layer is as follows:

Fl
i = σ(AiF

(l−1)
i Wl

i), (1)

where the superscript and subscript denote the indices for layer
l ∈ [1, L] and view i ∈ [1,M]. Ai ∈ RN×N is another abstract
representation of Gi, which refers to the normalized adjacency
matrix. Fl

i ∈ RN×Dl represents the output node feature matrix
of the l-th layer, where F0

i ∈ RN×D0 corresponds to the initial
gene features. Wl

i ∈ RD(l−1)×Dl denotes a view-layer-specific
trainable feature transformation matrix. Besides, σ(·) is a non-

TABLE I: Definitions of all symbols.

Symbol Definition
G A graph network composed of gene data
V All gene nodes in a gene graph
S All gene nodes sampled from multi-omics data
E All edges formed by the gene relationships
M The total number of views of gene graphs
N The total number of samples in a gene set
D The dimension of a feature matrix or vector
L The total number of feature aggregation layers
A The adjacency matrix of a gene graph

F;E The gene feature representation matrices
W The feature transformation or projection matrix
P The probability transition matrix
D The degree vector of gene nodes in a graph
C The edge classification matrix for SL prediction

Q;K;V The query, key, and value matrices in self-attention
v The node sample in a gene set or graph

i; j; k; l These lowercase letters represent different indices
σ(·) The activation function, such as ReLU or Tanh
⊕(·) The concatenation operation

Attn(·) The self-attention calculation
G The multi-view graph from SL and omics data
F The feature tensor of a multi-view gene graph
E The feature tensor of pairwise concatenated genes
Y The true label tensor of the predicted edges
L The model training loss of MSGT-SL

linear activation function, such as ReLU or Tanh. After parallel
aggregation in multiple views, MVGNN yields the final feature
tensor F={FL

1 , ...,F
L
M}, where L denotes the last layer index.

B. Cross-omics sampling

Since the core gene set, V1, required for SL prediction tasks,
is usually a small subset of any omics gene set Vi (i ∈ [2,M]),
the stacked MVGNN struggles to fuse non-core genes (Vi\V1)
beyond the local scope of V1 in Gi. In other words, the iterative
hop-wise exploration based on V1 tends to propagate excessive
non-core gene information to V1, posing a threat to the primacy
of core genes. To elegantly incorporate auxiliary genes beyond
SL data, we propose a cross-omics sampling strategy based on
random walks [44]. Concretely, after aggregation, it starts with
a batch of core genes and runs sampling across multiple omics
views that contain them, as shown in Fig. 1. For the i-th omics
view, the transition probabilities can be formulated as follows:

Pi(vk|vj) =

{
1

Di(vj)
, Ai(vk, vj) > 0

0, otherwise
, (2)

where Pi(vk|vj) is an entry of the probability transition matrix
Pi ∈ RN×N , symbolizing the probability of transitioning from
the current gene node vj to the next one vk. Di ∈ R1×N stands
for the degree vector of gene nodes in Vi, where Di(vj) is the
number of edges originated from vj . Through serial transitions,
we traverse non-SL relationships to uncover a set of genes that
have potential associations with the core genes, denoted as Si.
After parallel walks in diverse omics views, we treat the union
S=∪Mi=2Si as the output genes. In this way, we strike a balance
between the scale of core and non-core genes, especially when
dealing with large-scale multi-omics data.

C. Self-attention

After obtaining the feature tensor F and the sampled cluster
S of gene nodes, we concatenate the features of all views based
on the gene indices and filter out irrelevant gene samples using
S, which is formulated as follows:

F(vj) = FL
1 (vj)⊕ FL

2 (vj) · · · ⊕ FL
M (vj), s.t. vj ∈ S, (3)

where FL
i (vj) ∈ R1×DL is the DL-dimensional vector of gene

node vj in the i-th view, and ⊕ is an end-to-end splicing of two
vectors. Thus, F ∈ RN ′×D′

is the integrated feature matrix for
S, where N ′ represents the total number of sampled genes and
D′=MDL represents the node feature dimension.

Nonetheless, F solely equips the local structural information
from multiple views, disregarding the long-range dependencies
in the gene set S. Drawing inspiration from graph transformers
(GTs) [41], which allow input nodes to communicate with each
other without hop restrictions, here we utilize a single standard
self-attention layer to obtain implicit global structural patterns.
We project the input F into three components of self-attention:

Q = FWα, K = FWβ , V = FWγ , (4)

where Wα, Wβ , and Wγ are all D′×D′′ projection matrices.
Q, K, and V denote query, key, and value matrices of N ′×D′′

shape. After that, the calculation of self-attention is as follows:

Attn(F) = softmax(A)V, s.t. A =
QK⊤
√
D′′

, (5)

where A ∈ RN ′×N ′
denotes a matrix with similarities between

queries and keys, and softmax(A) stores attention weights that
determine the importance or relevance of each input gene node
with respect to the current node. For brevity, we omit the direct
extension of the single-head calculation to its multi-head form,
which would yield more stable results in practical experiments.
Moreover, we cleverly dealt with two possible problems of the
GT: i) Since the multi-omics matrices {FL

i |i ∈ [2,M]} spliced
after FL

1 can essentially be regarded as a new type of structural
encoding (SE) [42], [45], self-attention effectively understands
permutation-invariant gene nodes while retaining gene identity
awareness for SL prediction. ii) Cross-omics sampling not only
ensures the dominance of core genes, but also reduces the input
scale N ′ of self-attention and avoids inefficient GT calculation.

D. SL prediction

To realize SL prediction, we first extract relevant genes from
the feature matrix Attn(F) ∈ RN ′×D′′

output by the GT layer:

E(vj) = Attn(F)(vj), s.t. vj ∈ V1 ∩ S, (6)

where E(vj) ∈ R1×D′′
indicates the feature vector of the gene

vj belonging to the core set V1. Then, we concatenate the gene
features in a pairwise manner to yield the edge features of G1:

E(vj , vk) = E(vj)⊕E(vk), s.t. vj , vk ∈ V1 ∩ S, (7)

where E(vj , vk) indicates the feature vector of the virtual edge
between the core genes vj and vk, whose vector dimension is

Algorithm 1 Multi-omics Sampling-based Graph Transformer
for synthetic lethality (MSGT-SL)
Input: A multi-view gene graph G and true SL edge labels Y
Output: A MSGT-SL proficient in predicting SL relationships

1: ▷ Step 1: MVGNN ← Sec. II-A
2: {Fl

i|i ∈ [1,M], l ∈ [0, L]} ← Eq. (1) // local aggregation
3: for batch index=1 to last batch do
4: ▷ Step 2: Cross-omics sampling ← Sec. II-B
5: S ← {Si ← Pi|i ∈ [2,M]} ← Eq. (2) // random walk
6: ▷ Step 3: Self-attention ← Sec. II-C
7: F← Eq. (3) // concatenation of features from all views
8: Q,K,V← Eq. (4) // key components of self-attention
9: Attn(F)← Eq. (5) // capture long-range dependencies

10: ▷ Step 4: SL prediction ← Sec. II-D
11: E ,E← Eqs. (6, 7) // pairwise splicing of gene features
12: L ← Eq. (8) // cross-entropy loss of edge classification
13: end for

2D′′. Subsequently, we perform the binary classification of SL
relationships and use a cross-entropy loss function to optimize:

L = − 1

(N ′′)2

N ′′∑
j=1

N ′′∑
k=1

log(softmax(E(vj , vk)C))Y(vj , vk), (8)

where C ∈ R2D′′×2 can be regarded as an edge classifier, and
Y(vj , vk) ∈ R2×1 is the transposed label vector corresponding
to E(vj , vk). In addition, N ′′=|V1∩S| denotes the total number
of core genes in the sampled cluster. By continuously adjusting
the model parameters via backpropagation, the construction of
MSGT-SL is eventually completed. The algorithm overview is
summarized in Alg. 1.

III. EXPERIMENTS

In this part, we conduct evaluation experiments to verify the
performance of MSGT-SL. Three aspects about MSGT-SL can
be condensed as follows:

• It achieves the best results across two SL prediction tasks.
• Each of its constituents contributes to result improvement.
• It is insensitive to key hyperparameters and very efficient.

A. Datasets and metrics

The experiments involve the following two real datasets for
SL prediction, with statistical information detailed in Table II.
Specifically, following an efficient processing strategy [38], we
utilize the mapping system proposed by [46] to collect cancer
cell-specific SL data. Using a double-knockdown CRISPR (the
acronym for clustered regularly inter-spaced short palindromic
repeats) interference technology, we quantify gene interactions
of 448 and 387 specified core genes from two cell lines (K562
& Jurkat) respectively, and then identify SL gene pairs based
on interaction scores below -3. Taking the K562 as an example,
we build the SL view in the dataset named after it, whose graph
topology will provide valuable information about unknown SL
relationships within this specific cell line. Besides, we consider
additional omics views from general population analysis rather

TABLE II: Statistics of datasets. Only SL views have SL edges
as ground-truth labels for training and testing of SL prediction.

Data Number SL view
Multi-omics views

Phy Gen Exp Ess

K562
Node 448 19094 4613 12644 14347
Edge 1523 1411290 21828 1168026 445540

Jurkat
Node 387 19094 4613 12644 14347
Edge 373 1411290 21828 1168026 445540

than specific to one cell line. Concretely, here we integrate four
categories of omics views from different dataset sources: i) We
yield two omics views via the biological general repository for
interaction datasets (BioGRID) [47], which reveal the Physical
and Genetic interactions between genes from multiple different
cell lines. ii) We calculate the Pearson correlation among genes
from the cancer cell line encyclopedia (CCLE) [48] Expression
profiles and connect significantly correlated gene pairs < 0.01.
iii) We construct a co-Essentiality view with the CRISPR data
from the cancer dependency map portal (DepMap) [49], which
reflects common patterns of interactions among genes. Overall,
these cell-independent views also provide valuable information
for predicting SL pairs specific to the K562 or Jurkat cell lines.
For any gene in any view, its characteristics include expression,
copy number, mutation, and essentiality.

To quantify the performance of SL prediction, we apply the
following evaluation metrics, namely accuracy (Acc), F1-score
(F1), and area under the receiver operating characteristic curve
(ROC-AUC).

B. Baselines

We compare MSGT-SL with several state-of-the-art (SOTA)
GNN-based baselines for SL prediction: GCN and GAT [33],
[34] are designed for feature learning on homogeneous graphs.
DDGCN [28] designs a new dual-dropout mechanism to tackle
overfitting but lacks external sources of information. GCATSL
[29] introduces biological data, including biological processes,
cellular components, and protein-protein interactions as inputs,
and applies a dual-attention mechanism to obtain gene features
from different input graphs. KG4SL and PiLSL [32], [37] use
knowledge graphs (KGs) as model inputs. KG4SL employs the
attention mechanism to calculate the weights of different types
of nodes and edges in each aggregation layer. PiLSL constructs
locally closed sub-graphs for each pair of genes and integrates
multi-omics data to acquire more expressive features for more
robust SL prediction. MVGCN-iSL [38] employs a multi-view
GCN to integrate gene features from multi-omics data to serve
SL prediction. All models predict lethality only for core genes.

C. Settings

MSGT-SL1 implements a shallow MVGNN with L=2 layers
based on GCN, with dimensions D1=128 and D2=64. For any
batch, it starts with 100 core genes ∈ V1 and then runs random
walks with the length of 10 in four omics views Vi (i ∈ [2, 5]).
After obtaining a sampling set S, it performs resampling while

1All data and codes are available at https://github.com/MSGT-SL/MSGT-SL

TABLE III: Experimental results on two SL prediction datasets under the leave-gene-pair-out evaluation setting, where the best
and second-best results are shown in bold and italics. The last column and row represent the mean of all metrics and the gain
(%↑) of the best result compared to the second-best result.

Model K562 Jurkat MeanAcc F1 ROC-AUC Acc F1 ROC-AUC
GCN 0.696 ± 0.003 0.694 ± 0.004 0.790 ± 0.003 0.628 ± 0.003 0.621 ± 0.005 0.711 ± 0.006 0.690
GAT 0.704 ± 0.004 0.700 ± 0.004 0.796 ± 0.005 0.631 ± 0.006 0.627 ± 0.005 0.721 ± 0.010 0.696

DDGCN 0.702 ± 0.006 0.701 ± 0.005 0.793 ± 0.005 0.628 ± 0.003 0.624 ± 0.002 0.717 ± 0.016 0.694
GCATSL 0.727 ± 0.002 0.722 ± 0.002 0.801 ± 0.004 0.647 ± 0.006 0.642 ± 0.007 0.734 ± 0.013 0.712
KG4SL 0.711 ± 0.003 0.710 ± 0.004 0.798 ± 0.003 0.636 ± 0.003 0.634 ± 0.002 0.724 ± 0.019 0.702
PiLSL 0.730 ± 0.002 0.726 ± 0.004 0.805 ± 0.010 0.674 ± 0.003 0.672 ± 0.002 0.742 ± 0.021 0.724

MVGCN-iSL 0.734 ± 0.002 0.730 ± 0.002 0.808 ± 0.007 0.677 ± 0.003 0.675 ± 0.004 0.749 ± 0.021 0.728
MSGT-SL 0.766 ± 0.005 0.764 ± 0.007 0.835 ± 0.012 0.737 ± 0.006 0.733 ± 0.006 0.803 ± 0.008 0.773
Gain (%) 3.3↑ 3.4↑ 2.7↑ 6.0↑ 5.8↑ 5.4↑ 4.5↑

TABLE IV: Experimental results on two SL prediction datasets under the leave-gene-out evaluation setting.

Model K562 Jurkat MeanAcc F1 ROC-AUC Acc F1 ROC-AUC
GCN - - - - - - -
GAT - - - - - - -

DDGCN - - - - - - -
GCATSL 0.515 ± 0.006 0.511 ± 0.005 0.537 ± 0.020 0.508 ± 0.012 0.507 ± 0.012 0.512 ± 0.014 0.515
KG4SL 0.510 ± 0.003 0.505 ± 0.003 0.528 ± 0.003 0.508 ± 0.012 0.504 ± 0.011 0.507 ± 0.006 0.510
PiLSL 0.539 ± 0.012 0.530 ± 0.011 0.545 ± 0.014 0.526 ± 0.021 0.518 ± 0.019 0.541 ± 0.012 0.533

MVGCN-iSL 0.541 ± 0.003 0.535 ± 0.003 0.554 ± 0.005 0.526 ± 0.021 0.515 ± 0.016 0.533 ± 0.013 0.534
MSGT-SL 0.567 ± 0.003 0.560 ± 0.002 0.572 ± 0.004 0.570 ± 0.012 0.557 ± 0.009 0.609 ± 0.005 0.572
Gain (%) 2.6↑ 2.5↑ 1.8↑ 4.4↑ 3.9↑ 6.8↑ 3.8↑

limiting the total number of genes to N ′=500. Next, it sets the
projection dimension and the number of heads in self-attention
to 64 and 4. Since SL edges are exclusive to the SL view, the
samples from the SL view are divided into training, validation,
and test sets in a ratio of 7:1:2. It takes the Adam optimizer to
optimize parameters with a learning rate of 0.0001. To address
overfitting, it adopts an early stopping technique. All codes are
based on Python and repeated 3 times on the NVIDIA GeForce
RTX 3080 (10240 MiB) GPU.

We employ two evaluation settings: leave-gene-pair-out and
leave-gene-out. The former divides the training, validation, and
test sets by edges, exposing the genes involved in all test edges
to training (transductive). The latter divides the three sets based
on genes, with no exposure of test genes in training (inductive).

D. Prediction results
We compare the performance of our MSGT-SL with various

existing SOTA baselines for SL prediction on two cell-specific
gene datasets that incorporate multi-omics data. We present the
edge classification results under the leave-gene-pair-out setting
in Table III, from which we sum up the following observations:
1) The GCN model performs worst in both cell lines, implying
that local feature aggregation on SL data alone is inapplicable.
2) GAT and DDGCN surpass GCN because they either employ
better attention-based feature aggregation or discard nodes and
edges to regulate aggregation objects. Such observations imply
that the wise use of feature aggregation benefits SL prediction.
3) GCN, GAT, and DDGCN perform worse than baselines that
introduce additional information, indicating the significance of

auxiliary data in SL prediction. 4) KG-based KG4SL is weaker
than GCATSL with added biological data. Apart from inherent
differences between model architectures, we argue that another
possible explanation is that the complicated information in KG
is not completely suitable for SL analysis. 5) PiLSL, which is
also based on KG, outperforms GCATSL. It is not inconsistent
with the previous conclusion because PiLSL additionally uses
multi-omics data to enhance the gene features. Combined with
the superb performance of MVGCN-iSL, we can conclude that
introducing informative multi-omics data can indeed reinforce
SL prediction. 6) Our MSGT-SL achieves SOTA results across
all metrics, with a mean 4% improvement over the second-best
result. This finding is as expected. On the one hand, in addition
to 2-hop local aggregation, we introduce the graph transformer
(GT) to capture long-range dependencies among genes, which
is ignored by other models. On the other hand, we moderately
sample non-core genes across several large-scale omics views,
which harmoniously incorporate structure-aware auxiliary data
while ensuring the dominance of core genes.

Under the leave-gene-pair-out setting, the endpoint genes of
all test edges are already present in training, akin to identifying
some new SL edges in one whole fixed gene graph with known
partial SL gene pairs. In contrast, with a leave-gene-out setting,
the test genes are completely unseen to the trained model, thus
serving to evaluate the capacity of the models to generalize to
SL prediction of novel genes. The corresponding experimental
results under leave-gene-out are shown in Table IV, displaying
similar patterns as the leave-gene-pair-out setting. Notably, the
transductive baselines, GCN, GAT, and DDGCN, which do not

TABLE V: Ablation results of the three modules in MSGT-SL and multi-omics data under the leave-gene-pair-out setting. The
best and worst results are indicated as bold and underlined, where “w/o” denotes “without”. The last column and row illustrate
the mean of all metrics and the loss (%↓) of the best result compared to the worst result.

Model K562 Jurkat MeanAcc F1 ROC-AUC Acc F1 ROC-AUC
w/o MVGNN 0.605 ± 0.012 0.598 ± 0.011 0.637 ± 0.007 0.568 ± 0.027 0.541 ± 0.032 0.586 ± 0.034 0.589
w/o Sampling 0.765 ± 0.008 0.759 ± 0.009 0.824 ± 0.012 0.726 ± 0.003 0.724 ± 0.003 0.802 ± 0.009 0.766

w/o GT 0.727 ± 0.002 0.723 ± 0.001 0.803 ± 0.007 0.647 ± 0.006 0.643 ± 0.007 0.763 ± 0.014 0.717
w/o Omics 0.709 ± 0.006 0.706 ± 0.006 0.797 ± 0.008 0.672 ± 0.006 0.667 ± 0.006 0.769 ± 0.012 0.720
MSGT-SL 0.766 ± 0.005 0.764 ± 0.007 0.835 ± 0.012 0.737 ± 0.006 0.733 ± 0.006 0.803 ± 0.008 0.773
Loss (%) 16.1↓ 16.6↓ 19.8↓ 16.9↓ 19.2↓ 21.7↓ 18.4↓

TABLE VI: Ablation results of the three modules in MSGT-SL and multi-omics data under the leave-gene-out setting.

Model K562 Jurkat MeanAcc F1 ROC-AUC Acc F1 ROC-AUC
w/o MVGNN 0.526 ± 0.003 0.516 ± 0.006 0.533 ± 0.007 0.535 ± 0.012 0.522 ± 0.013 0.554 ± 0.018 0.531
w/o Sampling 0.562 ± 0.006 0.556 ± 0.006 0.569 ± 0.007 0.561 ± 0.032 0.552 ± 0.029 0.580 ± 0.017 0.563

w/o GT 0.536 ± 0.003 0.531 ± 0.004 0.548 ± 0.010 0.526 ± 0.021 0.514 ± 0.012 0.534 ± 0.009 0.531
w/o Omics - - - - - - -
MSGT-SL 0.567 ± 0.003 0.560 ± 0.002 0.572 ± 0.004 0.570 ± 0.012 0.557 ± 0.009 0.609 ± 0.005 0.572
Loss (%) 4.1↓ 4.4↓ 3.7↓ 4.4↓ 4.3↓ 7.5↓ 4.3↓

incorporate additional information are unable to perform novel
edge prediction. GCATSL and KG4SL show poor results on all
metrics, indicating weak generalizability, while the other three
models, PiLSL, MVGCN-iSL, and MSGT-SL, which integrate
the same multi-omics data, all have better generalization. Such
observations again justify that additional auxiliary information
for SL prediction can facilitate more general gene embeddings,
especially for omics data directly related to gene studies. Next,
another noteworthy observation is that MSGT-SL demonstrates
remarkable breakthroughs, beating all baseline models. This is
because these previous GNN-based SL methods typically learn
from static gene graph networks constrained by predetermined
structural induction biases. For the GT layer, every batch of its
inputs and aggregations are randomly and dynamically formed,
so it constantly forces MSGT-SL to learn how to deal with new
genes during training. Hence, the best generality of MSGT-SL
makes it an ideal auxiliary tool to accelerate real SL prediction
applications in industries where the gene pairs to be identified
are often unfamiliar. Overall, the proposed MSGT-SL achieves
SOTA performance under both evaluation settings.

E. Ablation analysis
To further investigate the role of each module in MSGT-SL,

we perform ablation analysis and then showcase the results in
Table V and Table VI. We acquire four observations as follows:
1) Removing any module hurts the performance of MSGT-SL,
affirming their validity. 2) The absence of the MVGNN module
leads to the most significant drop in average results. The reason
is that MVGNN plays a key role in reinforcing the initial gene
features, even if it brings strict structural inductive biases [42].
3) Less performance impact after replacing random walks with
random sampling in cross-omics sampling. This is because the
random walk sampling has strong randomness while also being
structure-aware, then each sampled gene set implicitly encodes

non-SL gene relationships within its omics view. 4) Removing
the GT module under the leave-gene-out setting also yields the
largest performance drop, which is consistent with the analysis
of Table IV. As previous studies in [42], [50] have pointed out,
GT dynamically learns the long- and short-range dependencies
among input nodes, relaxing the inductive biases constraints of
the input gene graphs. Moreover, due to the implementation of
cross-omics sampling, our GT deals with irregular gene nodes,
which alleviates the influence of inductive biases and improves
the model generalizability. In addition to the internal modules,
we also fulfill an ablation analysis on the multi-omics data and
obtain two observations: 5) Upon removing the omics data, the
results under the leave-gene-pair-out evaluation setting surpass
the results of using GCN alone. This is because after removing
omics data, our MSGT-SL degenerates into a single-view GCN
followed by GT in the SL view, thereby capturing longer-range
gene dependencies and higher-quality gene features than GCN.
6) The model without multi-omics data cannot realize effective
training and SL prediction under the leave-gene-out evaluation
setting, which once again emphasizes the significance of omics
data for enhancing generalizability.

We summarize the driving inspirations of all components in
MSGT-SL as follows: To circumvent restricted generalizability
using SL data alone, we leverage informative multi-omics data.
To learn from the multi-view gene graph network, we leverage
MVGNN, the de-facto multi-view graph learning paradigm, to
discover local structural patterns of various gene relationships.
To discover the global structural patterns of gene relationships
and avoid issues (e.g. over-smoothing) that GNN is susceptible
to, we apply a GT that satisfies any spacing between two genes
for communication. To prevent deviation from cell-specific SL
predictions by GT embedding too many non-core gene features
into core genes due to the scale imbalance between omics data
and SL data, we design a new random walk-based cross-omics

Fig. 2: Results of sensitivity analysis for four hyperparameters.

sampling strategy. Serving as the bridge between MVGNN and
GT, this sampling reduces the calculation burden of each batch
of self-attention and improves the model generalizability. Also,
because we concatenate the outputs from all views of MVGNN
and its feature assembly of omics views is a natural structural
encoding (SE), there is no need to introduce additional position
encoding in GT. Overall, the introduction of all parts in MSGT-
SL is feasible and effective.

F. Hyperparameter analysis

To assess the impact of crucial parameters in MSGT-SL on
performance, we realize hyperparameter sensitivity analysis on
Jurkat in the leave-gene-pair-out setting. The four hyperparam-
eters include the number of MVGNN layers, the count of core
genes and the total number of genes in cross-omics sampling,
and the number of self-attention heads in GT. We exhibit their
results in Fig. 2, and draw four observations: 1) As the number
of MVGNN layers increases, the accuracy depicts a downward
trend, indicating that widening the aggregation range hop-by-
hop is suboptimal. 2) With an increasing number of core genes,
the model performance first increases and then decreases. This
change is attributed to the higher number of core genes leading
to a reduction in non-core genes. Therefore, a lower proportion
of non-core genes adversely affects the model performance. 3)
The total number of sampled gene nodes also triggers a similar
hump-shaped change. The consistent number of core genes and
increasing proportion of non-core genes affect performance by
disrupting the dominance of cell-specific core genes. At a total
number of 100, all genes are from SL data, equivalent to using
MSGT-SL without multi-omics data. 4) As the number of self-
attention heads increases, the model learns features from more
perspectives and subsequently integrates them, thereby leading
to performance improvement. However, after attaching enough
heads, increasing built-in parameters without more genes risks
overfitting and does not improve performance. Overall, the key
hyperparameters from MSGT-SL cause modest and reasonable
performance changes.

G. Computational complexity analysis

Since the efficiency of dry-lab strategies is also an essential
factor in real SL prediction, here we analyze the computational
complexity of MSGT-SL, which is mainly affected by the main

Fig. 3: Time required for all models to run on the Jurkat dataset
under the leave-gene-pair-out setting.

parts described in Sec. II. Firstly, the multi-view convolutional
aggregation on SL data as well as multi-omics data incurs the
cost of O(MLND2). Secondly, sampling operations in cross-
omics sampling costO(M |Si|), where |Si| indicates the length
of random walk in an omics view. Thirdly, operations such as
feature concatenation and self-attention calculation incur a cost
of O(HN2D), where H is the number of self-attention heads.
Finally, SL prediction costs O(2N). Therefore, the complexity
of MSGT-SL mainly arises from GNNs, similar to other GNN-
based strategies. For a more intuitive comparison, Fig. 3 shows
the runtime of our MSGT-SL and all baselines on Jurkat under
the leave-gene-pair-out setting. Even without the fastest speed,
MSGT-SL exhibits competitive efficiency. Given the promising
performance gains, investing in reasonable time resources for
MSGT-SL is justified.

IV. CONCLUSION

In this paper, we propose a new multi-omics sampling-based
graph transformer for SL prediction (MSGT-SL) of gene pairs.
Unlike existing computational methods that solely apply GNN
for gene analysis, MSGT-SL adopts the GT framework to learn
potential long-range dependencies among genes. Then, MSGT-
SL introduces additional auxiliary genes in a moderate manner
through cross-omics sampling, ensuring the dominance of core
genes used for SL prediction. Such a random sampling strategy
also promotes GT to alleviate inductive bias and computational
efficiency issues. Comprehensive experiments demonstrate that
MSGT-SL substantially improves SL prediction with excellent
generalizability and efficiency. In future work, we will harness
MSGT-SL as an auxiliary tool to expedite SL identification and
combine it with reliable web-lab verification to achieve more
practical deployment and application.

ACKNOWLEDGMENT

This research is supported by the Strategic Priority Research
Program of Chinese Academy of Sciences (CAS) under Grant
XDC02040400, National Natural Science Foundation of China
under Grant 62002007, Natural Science Foundation of Beijing
Municipality through Grant 4222030.

REFERENCES

[1] C. J. Lord and A. Ashworth, “PARP inhibitors: Synthetic lethality in
the clinic,” in Science, 2017, vol. 355, no. 6330, pp. 1152-1158.

[2] R. L. Beijersbergen, L. F. Wessels, and R. Bernards, “Synthetic lethality
in cancer therapeutics,” in Annual Review of Cancer Biology, 2017, vol.
1, pp. 141-161.

[3] J. L. Hartman IV, B. Garvik, and L. Hartwell, “Principles for the
buffering of genetic variation,” in Science, 2001, vol. 291, no. 5506,
pp. 1001-1004.

[4] R. Kelley and T. Ideker, “Systematic interpretation of genetic interactions
using protein networks,” in Nature Biotechnology, 2005, vol. 23, no. 5,
pp. 561-566.

[5] R. Brough, J. R. Frankum, D. Sims, ..., and A. Ashworth, “Functional
viability profiles of breast cancer,” in Cancer Discovery, 2011, vol. 1,
no. 3, pp. 260-273.

[6] A. H. Y. Tong and C. Boone, “16 high-throughput strain construction
and systematic synthetic lethal screening in saccharomyces cerevisiae,”
in Methods in Microbiology, 2007, vol. 36, pp. 369-707.

[7] R. Brough, J. R. Frankum, S. Costa-Cabral, ..., and A. Ashworth,
“Searching for synthetic lethality in cancer,” in Current Opinion in
Genetics & Development, 2011, vol. 21, no. 1, pp. 34-41.

[8] J. Luo, M. J. Emanuele, D. Li, ..., and S. J. Elledge, “A genome-wide
RNAi screen identifies multiple synthetic lethal interactions with the Ras
oncogene,” in Cell, 2009, vol. 137, no. 5, pp. 835-848.

[9] D. Du, A. Roguev, D. E. Gordon, ..., and N. J. Krogan, “Genetic
interaction mapping in mammalian cells using CRISPR interference,”
in Nature Methods, 2017, vol. 14, no. 6, pp. 577-580.

[10] T. Wang, H. Yu, N. W. Hughes, ..., and D. M. Sabatini, “Gene essentiality
profiling reveals gene networks and synthetic lethal interactions with
oncogenic Ras,” in Cell, 2017, vol. 168, no. 5, pp. 890-903.

[11] J. Wang, Q. Zhang, J. Han, ..., and X. Bo, “Computational methods,
databases and tools for synthetic lethality prediction,” in Briefings in
Bioinformatics, 2022, vol. 23, no. 3, pp. bbac106.

[12] S. Tang, B. Gökbağ, K. Fan, ..., and L. Li, “Synthetic lethal gene
pairs: Experimental approaches and predictive models,” in Frontiers in
Genetics, 2022, vol. 13, pp. 961611.

[13] L. Jerby-Arnon, N. Pfetzer, Y. Y. Waldman, ..., and E. Ruppin, “Predict-
ing cancer-specific vulnerability via data-driven detection of synthetic
lethality,” in Cell, 2014, vol. 158, no. 5, pp. 1199-1209.

[14] J. S. Lee, A. Das, L. Jerby-Arnon, ..., and E. Ruppin, “Harnessing
synthetic lethality to predict the response to cancer treatment,” in Nature
Communications, 2018, vol. 9, no. 1, pp. 2546.

[15] H. Liany, A. Jeyasekharan, and V. Rajan, “ASTER: A method to predict
clinically actionable synthetic lethal genetic interactions,” in bioRxiv,
2020.

[16] S. Sinha, D. Thomas, S. Chan, ..., and D. L. Dill, “Systematic discovery
of mutation-specific synthetic lethals by mining pan-cancer human
primary tumor data,” in Nature Communications, 2017, vol. 8, no. 1,
pp. 15580.

[17] M. J. Alvarez, Y. Shen, F. M. Giorgi, ..., and A. Califano, “Functional
characterization of somatic mutations in cancer using network-based
inference of protein activity,” in Nature Genetics, 2016, vol. 48, no.
8, pp. 838-847.

[18] Y. Hu, C. H. Chen, Y. Y. Ding, ..., and K. Tan, “Optimal control nodes
in disease-perturbed networks as targets for combination therapy,” in
Nature Communications, 2019, vol. 10, no. 1, pp. 2180.

[19] J. Gao, B. A. Aksoy, U. Dogrusoz, ..., and N. Schultz, “Integrative
analysis of complex cancer genomics and clinical profiles using the
cBioPortal,” in Science Signaling, 2013, vol. 6, no. 269, pp. pl1-pl1.

[20] H. Cho, B. Berger, and J. Peng, “Compact integration of multi-network
topology for functional analysis of genes,” in Cell Systems, 2016, vol.
3, no. 6, pp. 540-548.

[21] J. Li, L. Lu, Y. H. Zhang, ..., and Y. D. Cai, “Identification of synthetic
lethality based on a functional network by using machine learning
algorithms,” in Journal of Cellular Biochemistry, 2019, vol. 120, no.
1, pp. 405-416.

[22] S. Das, X. Deng, K. Camphausen, and U. Shankavaram, “DiscoverSL:
an R package for multi-omic data driven prediction of synthetic lethality
in cancers,” in Bioinformatics, 2019, vol. 35, no. 4, pp. 701-702.

[23] G. Benstead-Hume, X. Chen, S. R. Hopkins, ..., and F. M. Pearl,
“Predicting synthetic lethal interactions using conserved patterns in
protein interaction networks,” in PLoS Computational Biology, 2019,
vol. 15, no. 4, pp. e1006888.

[24] H. Liany, A. Jeyasekharan, and V. Rajan, “Predicting synthetic lethal
interactions using heterogeneous data sources,” in Bioinformatics, 2020,
vol. 36, no. 7, pp. 2209-2216.

[25] J. Huang, M. Wu, F. Lu, ..., and Z. Zhu, “Predicting synthetic lethal
interactions in human cancers using graph regularized self-representative
matrix factorization,” in BMC Bioinformatics, 2019, vol. 20, no. 19, pp.
1-8.

[26] Y. Liu, M. Wu, C. Liu, ..., and J. Zheng, “SL2MF: Predicting syn-
thetic lethality in human cancers via logistic matrix factorization,” in
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2019, vol. 17, no. 3, pp. 748-757.

[27] F. Wan, S. Li, T. Tian, ..., and J. Zeng, “Exp2sl: a machine learning
framework for cell-line-specific synthetic lethality prediction,” in Fron-
tiers in Pharmacology, 2020, vol. 11, pp. 112.

[28] R. Cai, X. Chen, Y. Fang, ..., and Y. Hao, “Dual-dropout graph convo-
lutional network for predicting synthetic lethality in human cancers,” in
Bioinformatics, 2020, vol. 36, no. 16, pp. 4458-4465.

[29] Y. Long, M. Wu, Y. Liu, ..., and X. Li, “Graph contextualized attention
network for predicting synthetic lethality in human cancers,” in Bioin-
formatics, 2021, vol. 37, no. 16, pp. 2432-2440.

[30] Z. Hao, D. Wu, Y. Fang, ..., and X. Li, “Prediction of synthetic lethal
interactions in human cancers using multi-view graph auto-encoder,” in
IEEE Journal of Biomedical and Health Informatics, 2021, vol. 25, no.
10, pp. 4041-4051.

[31] B. Zhang, C. Tang, Y. Yao, ..., and Q. Liu, “The tumor therapy landscape
of synthetic lethality,” in Nature Communications, 2021, vol. 12, no. 1,
pp. 1275.

[32] S. Wang, F. Xu, Y. Li, ..., and J. Zheng, “KG4SL: knowledge graph
neural network for synthetic lethality prediction in human cancers,” in
Bioinformatics, 2021, vol. 37, no. 1, pp. i418-i425.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017, pp. 1–14.

[34] P. Veličković, G. Cucurull, A. Casanova, ..., and Y. Bengio, “Graph
attention networks,” in ICLR, 2018.

[35] X. Zhao, Q. Dai, J. Wu, ..., and S. Y. Philip, “Multi-view tensor graph
neural networks through reinforced aggregation,” in IEEE Transactions
on Knowledge and Data Engineering, 2022, vol. 35, no. 4, pp. 4077-
4091.

[36] X. Zhao, J. Wu, H. Peng, ..., and L. He, “Deep reinforcement learning
guided graph neural networks for brain network analysis,” in Neural
Networks, 2022, vol. 154, pp. 56-67.

[37] X. Liu, J. Yu, S. Tao, ..., and J. Zheng, “PiLSL: pairwise interaction
learning-based graph neural network for synthetic lethality prediction in
human cancers,” in Bioinformatics, 2022, vol. 38, np. 2, pp. ii106-ii112.

[38] K. Fan, S. Tang, B. Gökbağ, ..., and L. Li, “Multi-view graph convolu-
tional network for cancer cell-specific synthetic lethality prediction,” in
Frontiers in Genetics, 2023, vol. 13, pp. 1103092.

[39] K. Oono and T. Suzuki, “Graph neural networks exponentially lose
expressive power for node classification,” in ICLR, 2020.

[40] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and
its practical implications,” in ICLR, 2020.

[41] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks
to graphs,” in AAAI Workshop on Deep Learning on Graphs: Methods
and Applications, 2020.

[42] D. Chen, L. O’Bray, and K. Borgwardt, “Structure-aware transformer
for graph representation learning,” in ICML, 2022, pp. 3469-3489.

[43] L. Rampášek, M. Galkin, V. P. Dwivedi, ..., and D. Beaini, “Recipe for
a general, powerful, scalable graph transformer,” in NeurIPS, 2022, vol.
35, pp. 14501-14515.

[44] F. Xia, J. Liu, H. Nie, ..., and X. Kong, “Random walks: A review of
algorithms and applications,” in IEEE Transactions on Emerging Topics
in Computational Intelligence, 2019, vol. 4, no. 2, pp. 95-107.

[45] C. Ying, T. Cai, S. Luo, ..., and T. Y. Liu, “Do transformers really
perform badly for graph representation?” in NeurIPS, 2019, vol. 34, pp.
28877-28888.

[46] M. A. Horlbeck, A. Xu, M. Wang, ..., and L. A. Gilbert, “Mapping the
genetic landscape of human cells,” in Cell, 2018, vol. 174, no. 4, pp.
953-967.

[47] R. Oughtred, C. Stark, B. J. Breitkreutz, ..., and M. Tyers, “The BioGRID
interaction database: 2019 update,” in Nucleic Acids Research, 2019, vol.
47, no. D1, pp. D529-D541.

[48] M. Ghandi, F. W. Huang, J. Jané-Valbuena, ..., and W. R. Sellers, “Next-
generation characterization of the cancer cell line encyclopedia,” in
Nature, 2019, vol. 569, no. 7757, pp. 503-508.

[49] R. M. Meyers, J. G. Bryan, J. M. McFarland, ..., and A. Tsherniak,
“Computational correction of copy number effect improves specificity of
CRISPR–Cas9 essentiality screens in cancer cells,” in Nature Genetics,
2017, vol. 49, no. 12, pp. 1779-1784.

[50] M. S. Hussain, M. J. Zaki, and D. Subramanian, “Global self-attention
as a replacement for graph convolution,” in KDD, 2022, pp. 655-665.

